Opportunities for Stem Cells Therapy in Veterinary Medicine

Shahzad Ali¹, Aftab Ahmad², Muhammad Naeem Iqbal³,⁴, Ali Muhammad⁵, Muhammad Irfan⁶, Shamim Akhter⁶

¹Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan.
²School of Biological Sciences, University of the Punjab, New Campus, Lahore, Pakistan
³The School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
⁴Pakistan Science Mission (PSM), Noor Kot 51770, Pakistan.
⁵Department of Zoology, University of Poonch, Rawalakot 12350, Azad Kashmir, Pakistan
⁶Pir Mehr Ali Shah Arid Agriculture University Rawalpindi 46000, Pakistan

*Corresponding author: Shahzad Ali; Email: shahzaduaar772@gmail.com

Abstract
Animal contain stem cells in different parts of body that are involved in regeneration and repair process but regeneration and repair capacity of different animals is different. Stem cells can be classified on the basis of origin, potential of differentiation and cell surface markers. In addition to embryonic stem cells (ESCs), bone marrow derived mesenchymal stem cells (MSCs), circulating blood stem cells and umbilical cord blood stem cells are major source of stem cells for therapeutic purposes. Adipose derived MSCs have also proved to be rich and therapeutically important source of stem cells. Animal during lifetime suffer from various diseases that are treated by different therapeutical ways. With the advancement in research in area of stem cell biology, it provides a better alternative to treat several diseases including life threatening diseases. We provided information about current therapeutically potentials and future prospective of stem cells therapy in veterinary medicine. We collected information about stem cell research in various animals from peer reviewed journals using standard database. Stem cells therapy treat orthopedic lesions, disc regeneration, osteoarthritits, repair of cranial bone defects, cartilage defects, corneal stroma, tendon repair, ligament injury, liver injury, nerve regeneration etc. in various animals. Now a day’s extensive research work is going in area of stem cells research in USA, Europe, Middle East and Asia. In future, stem cells therapy bears a scope to treat broad spectrum of animals ranging from rat, cats, and dogs to food and milk producing animals like goat, sheep, cow and buffaloes.

Keywords: Embryonic stem cells, regeneration, therapy, veterinary medicine.

INTRODUCTION

Animals have ability to regenerate some parts of body which are accidentally lost i.e. tail of lizard during their course of life. Moreover repairing of body cells and tissues is normal phenomena both in animals and human. But variation in this regeneration process is seen in case of vertebrate and invertebrates; as invertebrates like hydra can regenerate whole tissue in rapid and precise manner while antler and liver regeneration in case of elk’s and human are examples of organ regeneration, healing of wounds is another example of regeneration in higher vertebrates. These tissue regeneration processes are done via activation of pre-existing stem cells or progenitor cells in body (Brockes, 1997). Due to this, research on ability of regeneration in living things through series of experimentations, scientists were able to recognize stem cells in different organs of body. It results in the development of different therapeutic approaches like bone marrow transplantation. Now-a-days scientists are involved in identification, extraction and potentially usage of different types of stem cells for therapeutic purpose. Stem cells are defined as cells that have the ability to self-renew as well can differentiate in different mature cells like hepatocytes, myocytes, neurons etc. In early embryos all cells are totipotent stem cells, as they have the ability to form all tissues of the organism. There are also stem cells in adult tissues that contribute to the renewal and regeneration of specific tissues.

In recent times, researchers have also discovered stem cells in umbilical cord and placenta. These stem cells have the ability to differentiate into all blood cells. Embryonic stem cells (ESCs) can be achieved from in vitro fertilization (IVF) and Somatic Cell Nuclear Transfer (SCNT) while adult stem can be affectively isolated from adult tissues of body. Three potential sources of stem cells to apply for transplants are bone marrow, the bloodstream,
and umbilical cord blood. Bone marrow of the pelvis area has an affluent source of stem cells and used most frequently for bone marrow transplant. Usually, a small number of stem cells are found in the blood, the stem cells are usually activated to harvest them from circulating blood. Umbilical cord blood can be an additional possible source of stem cells. The above mentioned three sources of stem cells can be used for the similar objective like to treat the patients suffering from different diseases. Here might be few controversies to each source; however every source is generally capable to supply the desired number of stem cells for treatment options. In addition to adult stem cells single blastomere can be used for isolation of ESCs (Klimanskaya et al., 2006). The inner cell mass (ICM) of blastocyst is the most common source of ESCs. For this purpose blastocyst can be produced in vivo and in vitro by insemination, direct sperm injection, SCNT and IVF (Klimanskaya et al., 2005; Amit and Itskovitz-Eldor, 2006; Fletcher et al., 2006). Induced Pluripotent stem cells (iPSCs) from different cell types (fibroblasts, hepatocytes etc.) had been produced by transfection of gene coding for Oct3/4, Sox2, c-Myc and Klf4 using similar cultural conditions as for ESCs (Takahashi and Yamanaka, 2006; Okita et al., 2007; Wernig et al., 2007) and these can be used as an alternative source of ESCs with minimal ethical issues.

Different strategies are used for the isolation of embryonic and adult stem cells from their sources for therapeutic purpose. Different approaches like mechanical dissection, immuno-selection are used for isolation of ICM from blastocyst in case of ESCs isolation. Adult stem cells are isolated from their sources by using mechanical digestion, enzymatic digestion, mononuclear cell fraction and centrifugation (Thomson et al., 1998; Koch et al., 2007). After isolation from blastocyst, culture and expansion of ICM can be achieved in tissue culture dish or petri plates having a mitotically inactivated feeder cell layer. But there are different views of scientist for the use of feeder layer and animal sera for culturing and expansion of ESCs. Contrary to ESCs, adult stem cells (ASCs) do not require feeder layer, they can be directly plated on plastic culture flasks or dish having material like polystyrene (Kang et al., 2005; Amit and Itskovitz-Eldor, 2006; Fletcher et al., 2006).

In case of stem cells like adipose derived-MSCs, angiogenesis and neovascularization is accelerated by secretion of cytokines such as hepatic growth factor (HGF), vascular endothelial growth factor (VEGF), placental growth factor (PGF), transforming growth factors-Beta (TGFβ), fibroblast growth factor (FGF-2) and angiopoietin and have been assisted by endothelial progenitor cells (Nakagami et al., 2006). Stem cells shows diverse plasticity, which mean these cells, can be differentiate into adipose tissue, bone, cartilage, muscles, cardiac, neuron and hematopoietic lineage and this differentiation potential have been experimentally proved in vitro and animal models. Diseases in different animals like rabbits (Oliveira et al., 2010), horses (MacLean et al., 2012; Young, 2012), Caprine (Murphy et al., 2003; Azari et al., 2011), dogs (Zhao et al., 2012) and mice (Cheng et al., 2010) were treated by stem cell therapy. These cells like others progenitor cells can target distinctively their pathological area, when administrated into body via intravenous and parenteral routes due to their precise ability of chemotaxis, which help in migration of stem cells toward distant target sites (Chen et al., 2001). Apart from these properties stem cell also have ability of revascularization, anti-apoptosis etc. which make stem cell a powerful candidate for therapy of veterinary diseases. Although stem cells research is focused on laboratory and large animals worldwide (Harding et al., 2013; Khan et al., 2013), recently, apart from goat (Dubey et al., 2013), buffalo (Black gold of Pakistan) is also included in this list (Puri et al., 2012; Sharma et al., 2013) in India. In present review, the current therapeutically potentials and future prospective of stem cells therapy in various animals is discussed.

Types of stem cells

Stem cells can be differentiated on the basis of different potential paths, including their potency, origin and cell surface markers. With respect to potency of differentiation of stem cell, they are divided into three types including totipotent stem cell, pluripotent stem cell and multipotent stem cell. Totipotent stem cells are cells which can give raise every type of cell of body as well as complete organism. Cells from premature embryonic stages and zygote are considered as totipotent in their potency. While stem cells that can give raise any type of tissue but they cannot give rise a complete functional organism are known as pluripotent stem cells. They can form all cells of the body except trophoblast. ESCs are example of pluripotent stem cells as they can differentiate into cells of three germ layers. Third types of stem cells are more differential, so that they give rise only partial number of tissues or cell types. Mesenchymal stem cells are an excellent example of multipotent stem cells which contain classic trilineage segregation potential to chondrogenic, adipogenic and osteogenic pedigree (Koch et al., 2008).

Stem cell with respect to their source of origin can divide them in two major types including embryonic stem cell and adult stem cells. ESCs are isolated from morulla or inner cell mass (ICM) of blastocyst of mammals while ASCs are localized in different parts of an organisms e.g. brain, liver, intestinal tissues, skin etc. ESCs can be produced by IVF, SCNT and more recently by forced expression of embryonic stem cells related gene in mature cells and are called iPSC. Moreover, most of the information related to ESCs came from two fields of investigation i.e. applied reproductive biology like IVF and fundamental research on mouse embryology. With the advancement in research related to stem cells, new concept are coming as in case of ASCs, a new term.
plasticity of ASCs is used, which mean it was considered commonly that hematopoietic stem cells from bone marrow can only be converted into blood and immune cells. But, now stem cell scientists are able to develop neurons and cells commonly found in brain from adult stem cells. Apart from division base on potency and origin, stem can be differentiate with respect to presence of surface markers like CD34, CD45, CD90, CD105, CD73, CD14, CD11b, CD79 and HLA-DR. As CD14, CD34 and CD45 are surface markers recognized on MSCs (Tyndall et al., 2007).

Stem cells in animals

Stem cell therapy have vast application in animals especially in equine and canine family, apart from these other animals including sheep, goat, monkey, duck, golden hamster, pig, swine, rat, rabbit etc are used as laboratory animal to explore more treatment regimens for human being as well. MSC alone and in combination with Insulin-Like Growth Factor-I Gene (AdIGF) results in optimal improvement in injured tendon histological score both in experimental and impulsive lesions in equine (Smith et al., 2003; Schnabel et al., 2009). But some controversies have been seen with MSCs treatment, as in case of long term histological look or biochemical composition of cartilage lesions did not considerably improved in equine model while major healing has been seen at early stage in same animal (Wilke et al., 2007). Autologous peripheral blood derived MSCs have been found to be affective for treatment of chronic degenerative joint disease (DJD) in horse (Spaas et al., 2012). The effect of cell therapy products [adipose-derived stromal vascular fraction (SVF), bone marrow mononuclear cells (BMMNs), cord blood mononuclear cells (CBMNs) and platelet rich plasma] on MSCs function were studies in horse for acute orthopedic lesions treatment in vitro. They found all cell therapy product play role in proliferation of MSCs, while SVF play most significant role (Kol et al., 2012). In a recent research on equine bone marrow, MSCs reported these stem cells can be proved as positive applicant for cell therapy in game animals (Adams et al., 2012). Moreover, in recent study silica nano-particles were found as a very good labeling maker for canine Mesenchymal stem cells and this approach can be used for distribution and fate of transplanted MSCs (Han et al., 2012).

Animal diseases potential candidates for stem cells therapy

Although there are several animals’ diseases which can be treated with stem cell therapy, however, following are the few important veterinary diseases that can be treated with different types of stem cells as given in table 1.

<table>
<thead>
<tr>
<th>Animal Type</th>
<th>Stem Cell Type</th>
<th>Disease/Disorder Treated</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dogs/ Canine</td>
<td>Mesenchymal stem cells (MSCs)</td>
<td>Canine Disc Degeneration</td>
<td>Serigano et al., 2010</td>
</tr>
<tr>
<td>Autologous adipose-derived (AD-D)-MSCs</td>
<td>Chronic osteoarthritis</td>
<td>Guercio et al., 2012</td>
<td></td>
</tr>
<tr>
<td>Bone marrow MSC associated with rhBMP2</td>
<td>Osteosarcoma</td>
<td>Rici et al., 2012</td>
<td></td>
</tr>
<tr>
<td>AD-D Mesenchymal Stem and Regenerative Cells</td>
<td>Chronic Osteoarthritis</td>
<td>Black et al., 2008</td>
<td></td>
</tr>
<tr>
<td>Adipose-derived MSCs</td>
<td>Peri-ocular and joint diseases</td>
<td>Wood et al., 2012</td>
<td></td>
</tr>
<tr>
<td>Allogenic muscle stem cells</td>
<td>Duchenne-muscular dystrophy</td>
<td>Rouger et al., 2011</td>
<td></td>
</tr>
<tr>
<td>Adipose derived stem cells and coral scaffold</td>
<td>Repair of cranial bone defects</td>
<td>Cui et al., 2007</td>
<td></td>
</tr>
<tr>
<td>Rabbits</td>
<td>Autologous bone-marrow derived mesenchymal cell</td>
<td>Articular cartilage defects</td>
<td>Yanai et al., 2005</td>
</tr>
<tr>
<td>MSCs</td>
<td>Large osteochondral defect</td>
<td>Tatebe et al., 2005</td>
<td></td>
</tr>
<tr>
<td>Human MSCs</td>
<td>Incisional wound repair anterior</td>
<td>Alexander et al., 2009</td>
<td></td>
</tr>
<tr>
<td>MSCs or PDGF-B gene-transfected MSCs</td>
<td>Cruciate ligament reconstruction</td>
<td>Feng et al., 2007</td>
<td></td>
</tr>
<tr>
<td>Adipose-Derived Stem Cells</td>
<td>Therapy of the Corneal Stroma</td>
<td>Francisco et al., 2008</td>
<td></td>
</tr>
<tr>
<td>Fetal rabbit liver MSCs (fl-MSCs)</td>
<td>Congenital birth defects</td>
<td>Moreno et al., 2012</td>
<td></td>
</tr>
<tr>
<td>Intra-patellar fat pad derived MSCs</td>
<td>Osteoarthritis</td>
<td>Toghaie et al., 2011</td>
<td></td>
</tr>
<tr>
<td>Horses</td>
<td>Autologous equine MSCs</td>
<td>Superficial digital flexor tendon</td>
<td>Smith et al., 2003</td>
</tr>
<tr>
<td>Fetal derived embryonic-like stem cells (fdESC)</td>
<td>Tendonitis</td>
<td>Watts et al., 2011</td>
<td></td>
</tr>
<tr>
<td>Arthroscopic MSCs</td>
<td>Articular Defects</td>
<td>Wilke et al., 2007</td>
<td></td>
</tr>
<tr>
<td>Bone marrow mononucleated cells (BMMNCs)</td>
<td>Musculoskeletal overuse injuries</td>
<td>Torricelli et al., 2011</td>
<td></td>
</tr>
<tr>
<td>Bone marrow-derived MSCs (BMMCs)</td>
<td>Chondral defects</td>
<td>Mollwraith et al., 2011</td>
<td></td>
</tr>
<tr>
<td>Rat/ Mice</td>
<td>Allogeneic MSCs</td>
<td>Femoral segmental defect</td>
<td>Tsuchida et al., 2003</td>
</tr>
<tr>
<td>Mesoangioblasts</td>
<td>Alpa-sarcogycan null dystrophy</td>
<td>Sampalesi et al., 2003</td>
<td></td>
</tr>
<tr>
<td>Multipotent cell population from human adipose</td>
<td>Dystrophin expression</td>
<td>Rodriguez et al., 2005</td>
<td></td>
</tr>
</tbody>
</table>
Prioritization of stem cell therapy in animals

Animals in their course of life suffer from different diseases which are treated by different therapeutic approaches. Apart from looking after of own health, humans also gave intention towards the good health of pet and domesticated animals as these animals are supportive for them in different daily life activities and excellent source of food as well. Veterinary medicine is a branch of science, in which we study about body of animal and its functions, moreover study about different therapeutic techniques beneficial for preservation and improvement of animals health (Fortier and Travis, 2011). Different therapeutic approaches like chemotherapy, acupressure, curative magnetism, bone setting, homeopathy, osteopathy, phytotherapy are some of the practice used in veterinary clinics. Traditional veterinary medicines are also used for treatment of animals. In traditional veterinary medication, body of patient divided into different parts like a physical set of organs, muscles, joints, and tissue systems and treatment is given according to this division with surgery, drugs, chemicals or radiation. Variable side effects have been faced by animals due to variable toxic nature, trauma due to destructive effect of these therapeutical approaches of chemical, radiation and surgery. So, in case of traumatic emergencies to prevent brain edema different supportive treatments like usage of steroids, intravenous solution along other medicines are essential for saving life of patient. Apart from steroid, non-steroid anti-inflammatory drugs (NSAIDs) are used in animals suffer from osteoarthritis (OA) but data depict that use of NSAIDs several times do not give full pain aid in case of a lot of dogs affected with osteoarthritis (Black et al., 2008).

From above mention literature it is clear that these traditional veterinary therapeutic approaches are time consuming and having some limitations in the form of side effects i.e. tumor formation etc. So, there is immense need of such therapeutical approaches which can overcome the shortcomings of these traditional veterinary practices. Stem cell therapy is excellent candidate for the treatment of veterinary diseases. Stem cells are multipotent and can differentiate into tendon, ligament, bone, cartilage, cardiac, nerve, muscle, blood vessels, fat, liver tissues etc. Clinical research on stem cell therapy demonstrated positive results in treating animals like horses with tendon and...
ligament injuries, osteochondral defects and osteoarthritis. Likewise positive improvement in canines suffering with osteoarthritic hip, defects of elbow and stifles have been reported (Verma et al., 2007).

To date stem cell have been isolated from different sources, used for stem cell therapy, like bone marrow stem cells, AD-MSCs, mesoangioblast stem cells, infrapatellar fat pad derived MSCs, Hematopoietic stem cell, Epidermal stem cells, ESCs, neural stem cells, cardiac stem cells etc. Every type of stem cell mentioned above has its own benefits but AD-MSCs have been most successfully used in treatment of osteoarthritis, fractures, cerebral infarction, muscle dystrophy, autoimmune disorders etc. (Chen et al., 2001; Murphy et al., 2003; El-Badri et al., 2004; Uccelli et al., 2006). These stem cell having functions including limiting anti-inflammatory responses and promote anti-inflammatory pathways (Aggarwal and Pittenger, 2005) support angiogenesis, tissue remodeling, differentiation, and anti-apoptotic events by secreting bioactive level of cytokines and growth factors (Rehman et al., 2004; Nakagami et al., 2006).

Authors give preference to AD-MSCs over traditional and regenerative cell derived from bone marrow because of their easy availability, can be collection in great concentration and contain heterogeneous mixture of MSCs, endothelial progenitor cells, immune cells, fibroblast etc. (Verma et al., 2007). Furthermore still no systematic adverse actions have been reported in case of AD-MSC therapy. These information are sufficient to conclude that stem cell therapy is safe and having significant place in treatment of veterinary diseases.

Challenge, difficulties and ethical concerns in stem cell therapy

Stem cell research provides therapeutic profit in the fields of remedial cloning and regenerative medicine. This research approach provides great prospective in healing and therapy of illness related to human being and animal species. With the advancement in stem cell research, scientists were able to develop diverse body parts in laboratories for the aid in healing of diseases. Scientists were capable to identify defects related to birth, sterility, reproduction related diseases and diseases of other body organs. Apart from benefits of stem cell therapy, there is a chapter of controversies related to stem cell therapy both in human and animal population. Problem of contamination during cell therapy is a big issue as any invisible transfer defector stem cell can produce tumor in recipient body. Transmission of communicable diseases like viral, bacterial etc. during stem cell therapy is of particular concern. Specialized cells which are used for cell therapies in animals must be tested several times in vitro and in vivo in suitable experimental or laboratory animals before their clinical practices to illustrate that they can repair regular physiological role in sick animal. Another issue related to cell therapy is of tissue rejection. Questions have risen related to politics and religion status of stem cell therapy.

As political and religious disagreements about stem cell therapy are everywhere but severity of issue varies from country to country.

CONCLUSION

In conclusion, currently we are using stem cell therapy for the treatment of different diseases in valuable animals like racing horses (having good genetic traits), cats, dogs etc. We hope, in future we will be able to use these stem cell therapeutical approaches widely for the treatment of different diseases and disorders related to common food producing animals like buffalo, cow, sheep, goat etc.

ACKNOWLEDGEMENT

The authors acknowledge that this work is from student assignment submitted in Higher Education Commission (HEC), Pakistan.

CONFLICT OF INTEREST

The authors confirm that this article content has no conflict of interest.

REFERENCES

Serigano, K., Sakai, D., Hiyama, A., Tamura, F., Tanaka, M., Mochida, J., 2010. Effect of cell number on mesenchymal stem cell transplantation in a canine disc...

